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1. Introduction 

Future military engagements will require weapons systems exhibiting improved range and 
accuracy.  One of the technologies under investigation to achieve these goals is the 
electrothermal-chemical (ETC) propulsion concept, shown schematically in figure 1.  In the ETC 
gun, energy, which is stored either in batteries or a rotating device, is converted on demand into 
electrically generated plasma (resulting from the ablation of polyethylene material in a capillary) 
that is injected into the chamber in a howitzer or gun.  This plasma energy is used to ignite the 
chemical propulsion charge (i.e., solid propellant) as well as to enhance gun performance by 
taking advantage of a number of unique plasma characteristics.  For example, a low density 
plasma jet can efficiently ignite charges of high loading density, can control propellant mass 
generation rates (1), can reduce propellant charge temperature sensitivity, i.e., the variation of 
gun performance with changing ambient temperature (2, 3), and can shorten ignition delay, i.e., 
the time interval between firing of the igniter and ignition of the propellant (4).  Plasma igniters 
replace the chemical igniter and thus enhance the safety of the gun system.  
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Figure 1.  Electrothermal-chemical gun concept. 

Research has been carried out on the use of plasmas to ignite solid propellant (5, 6).  Since the 
plasma is at a temperature (~15,000 K) that is higher than chemical igniters (~3,000 K), the 
radiation properties of the plasma have also been considered.  The high plasma temperature leads 
to radiation effects nearly 100× greater than that of chemical igniters (i.e., a T4 effect) (5).  Such 
radiation could lead to significantly different temperature profiles within the propellant, causing 
changes in burn rates.  In addition, plasma has a much lower density than the gases generated by 
a chemical igniter, a feature that alters the convective heat transfer to the propellant (as the 
plasma moves through the grains) as well as the velocity and mode of flamespreading within a 
propellant bed.  It has been suggested that energy transport by convection may be as important as 
radiation transport in plasma-propellant interactions (PPIs) (7, 8).   
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The previously described effects can lead to significant changes in ballistic behavior and useful 
improvements in gun performance, but an understanding of the underlying physical mechanisms 
is necessary in order to achieve these goals.  To this end, the U.S. Army Research Laboratory 
(ARL) is supporting a comprehensive study of the interaction of the plasma efflux from an ETC 
igniter with solid propellant.  The goal of this work is to elucidate the relevant physical, 
mechanical, and chemical mechanisms that underlie the observed ballistic effects.  Various 
aspects of the experimental and modeling research program for PPI are described elsewhere  
(9–20).  The present report explores the use of a multidimensional, multiphase interior ballistics 
code, NGEN, that explicitly models the two-dimensional chamber geometry (including 
chambrage), the projectile afterbody intrusion into the chamber, the solid propellant charge, and 
includes the inflow of plasma into the gun chamber from an ablative polyethylene capillary.  The 
NGEN code predicts propellant ignition and flamespreading, chamber pressurization, pressure 
wave travel, projectile movement, and propellant burnout.  The accurate simulation of these 
interior ballistics parameters is important to the design of ETC guns.  

2. NGEN Code Description 

The U.S. Army’s NGEN3 code is a multidimensional, multiphase CFD code that incorporates 
three-dimensional continuum equations along with auxiliary relations into a modular code 
structure (21–24).  Since accurate charge modeling involves flowfield components of both a 
continuous and a discrete nature, a coupled Eulerian-Lagrangian approach is utilized.  On a 
sufficiently small scale of resolution in both space and time, the components of the flow are 
represented by the balance equations for a multicomponent reacting mixture describing the 
conservation of mass, momentum, and energy.  A macroscopic representation of the flow is 
adopted using these equations derived by a formal averaging technique applied to the 
microscopic flow.  These equations require a number of constitutive laws for closure including 
state equations, intergranular stresses, and interphase transfer.  The numerical representation of 
these equations as well as the numerical solution thereof is based on a finite-volume 
discretization and high-order accurate, conservative numerical solution schemes.  The spatial 
values of the dependent variables at each time step are determined by a numerical integration 
method denoted the Continuum Flow Solver (CFS), which treats the continuous phase and 
certain of the discrete phases in an Eulerian fashion.  The Flux-Corrected Transport scheme (25) 
is a suitable basis for the CFS since the method is explicit and has been shown to adapt easily to 
massively parallel computer systems.  The discrete phases are treated by a Lagrangian 
formulation denoted the Large Particle Integrator (LPI), which tracks the particles explicitly and 
smoothes discontinuities associated with boundaries between propellants yielding a continuous 
distribution of porosity over the entire domain.  The manner of coupling between the CFS and 
the LPI is through the attribution of properties (e.g., porosity and mass generation).  The size of 
the grid as well as the number of Lagrangian particles is user prescribed.   



 3

For the simulations of novel solid propellant configurations, such as disks stacked axially along 
the chamber centerline and/or thin annular concentric layers (wraps), the NGEN code takes a 
macroscopic approach. These solid propellant media are modeled using Lagrange particles that 
regress, produce combustion product gases, and respond to gasdynamic and physical forces. 
Individual grains, sticks, slab, and wrap layers are not resolved; rather, each medium is 
distributed within a specified region in the gun chamber. The constitutive laws that describe 
interphase drag, form-function, etc., assigned to these various media, determine preferred gas 
flow paths through the media (e.g., radial for disks and axial for wraps) and responses of the 
media to forces. Media regions can be encased in impermeable boundaries that yield to 
gasdynamic flow after a prescribed pressure load is reached.  Details of the NGEN code are 
supplied elsewhere (23, 24). 

For modeling ETC igniters, the NGEN code has been linked to the ARL plasma capillary code 
developed by Powell and Zielinski (26).  This capillary code uses the length, diameter, and 
material composition of the ablation capillary as well as the current-time profile and supplies as 
output the time-dependent temperature, density, molecular weight, and flow rate of the plasma 
efflux.  This information is mapped to the computational cells that lie along the breech face of 
the gun chamber, from the centerline to a predetermined radial position.  Pressure is linked 
between the NGEN code and the capillary code so that the changing chamber pressure, as 
computed by the NGEN code, is input the capillary code and modifies the plasma efflux.  The 
NGEN code represents the plasma as a single component gas with properties supplied by the 
capillary code.  Of course the plasma is actually a chemically diverse and reactive media which 
has been treated as such in separate modeling studies (17–19).  The macroscopic approach taken 
in the NGEN code, with respect to plasma representation, has been used to effectively model 
several solid propellant charge configurations (27, 28). 

3. Results for a Notional 120-mm Direct-Fire Charge 

In a previous paper, Conroy and Nusca (27) used the NGEN code to simulate a modified 
M829 tank charge containing three regions of propellants and the M829A1 projectile (without 
fins) intruding into the charge (see figure 2).  The solid propellant charge is JA2 and the total 
propellant mass is nominally the same as that of the M829A1 charge.  In that study, the charge 
was ignited using typical parameters for a Benite primer (from a M829A1 XKTC calculation) 
and a typical 120MW ETC plasma capillary source (27).  Comparisons of the basic charge with 
the Benite primer were made using both the lumped-parameter IBHVG2 (29) and one-
dimensional multiphase XKTC (30) interior ballistics codes.  
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Figure 2.  Diagram (dimensions in centimeters) describing propellant regions, projectile, and igniter (27). 

The breech pressure-time results of the benchmark charge (i.e., 19 perf JA2 cylindrical grains in 
regions 1, 2, and 3 of figure 2) are shown in figure 3a.  Both the XKTC and the IBHVG2 results 
agree, while the NGEN code calculation shows some broadening of the pressure at the peak.  
This discrepancy is thought to arise when the NGEN simulation allows burning propellant to 
become temporarily trapped beneath the chambrage and then later dislodged and allowed to flow 
down the tube.  This charge was then modified by replacing the rear two thirds of the charge 
with propellant disks (i.e., regions 1 and 2 of figure 2) having the same web and total mass as the 
grains to investigate ignition and flame spreading issues associated with this geometry typically 
used in higher loading density charges. Plasma ignition for this charge was compared to ignition 
produced by the Benite primer.  Figure 3b shows the initial pressure-time results.  What is 
immediately evident is that the pressurization and therefore ignition is much faster with the 
120MW plasma igniter as compared to the Benite primer; after a long delay, the Benite ignites 
the disks. 
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Figure 3.  (a) IBHVG2, XKTC, and NGEN code results for an all-granular charge ignited using Benite and 
(b) NGEN code results for a disk/disk/granular charge ignited using either Benite or plasma (27).  
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Figure 4 shows results from the NGEN code plotted at color contours of four flow variables–
porosity (blue to red, 0 to 1: open space to solid), igniter mass fraction (blue to red, 0 to 1: none 
to all), propellant temperature (blue to red: 294 K to 444 K), and gas pressure (blue to red: 1 to 8 
MPa and above).  Gas flow velocity vectors are superimposed on the propellant temperature 
contours.   The ignition temperature of the propellant is assumed to be 444 K.  The Benite igniter 
is assumed to be located along the centerline of the chamber from the breech wall to 15 cm.  At 
the time of 6.4 ms, the igniter has been exhausted and igniter gas resides mainly near the 
chamber breech, the forward charge of granular propellant is completely ignited, causing a 
pressurization of the forward chamber, and a negative pressure differential (i.e., breech pressure 
level is below forward pressure level).  Referring back to figure 3b, at this time the chamber 
pressure is building to the point that that full ignition is imminent.  These results indicate that the 
long ignition delay for the disk/disk/grain charge using the Benite primer is due to the inefficient 
transport of igniter gases between the disks (note vertical velocity vectors up to 35 cm and above 
the projectile afterbody [figure 4]).  This results in reduced convective heat transfer into this 
region. 
 

 

Figure 4.  NGEN code results (6.4 ms since igniter function) for disk/disk/grain charge ignited using Benite 
primer. 
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Figure 5 shows results from the NGEN code plotted at color contours of four flow variables – 
porosity (blue to red, 0 to 1: open space to solid), plasma mass fraction (blue to red, 0 to 1: none 
to all), propellant temperature (blue to red: 294 K to 444 K), and gas pressure (blue to red: 1 to  
8 MPa and above).  Gas flow velocity vectors are superimposed on the propellant temperature 
contours.   The ETC igniter is assumed to be located along the breech wall so that the plasma 
efflux issues into computational cells from the chamber centerline to 0.7 cm.  At the time of  
1.5 ms, the plasma has been distributed throughout the chamber, both the rear charge of 
propellant disks and the forward charge of propellant grains are near complete flamespread, and 
the favorable pressure differential (i.e., breech pressure level is above the forward pressure level) 
exists in the chamber.  Referring back to figure 3b, at this time the chamber pressure is building 
to the point that that full ignition is imminent.  These results indicate that the short ignition delay 
for the disk/disk/grain charge using a plasma igniter is due to the efficient transport of plasma 
between the disks and the resulting advanced progress of convective heat transfer to this region 
of propellant.  This effect is largely due to the fact that the plasma has a molecular weight of 
about 4.5 as compared to the Benite gas, which is about 33. 

 

 

Figure 5.  NGEN code results (1.5 ms since igniter function) for disk/disk/grain charge ignited using 
plasma. 
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In order to test the variability of the ignition results on the strength of the plasma igniter, the 
NGEN code simulations were repeated for the disk/disk/grain charge and two levels of reduced 
current supplied to the plasma-generating capillary.  Figure 6 shows the baseline and reduced 
current profiles used in the present study.  Results from these simulations are shown in figure 7 
and compared to the result from the study using Benite igniter, originally shown in figure 3b.  
Reduction of the current produces a plasma pulse to the chamber that is weaker and results in an 
increasing longer ignition delay.  It is interesting to note that a 50% reduction to the supplied 
current results in a situation in which the solid propellant charge fails to ignite.  Of course, these 
results are specific to the charge being examined (i.e., the type and form function of the 
propellant and the loading density) as well as the plasma capillary (length, diameter, and ablative 
material) and the current levels.  However, this results points to a potential situation in which a 
solid propellant charge could be designed for a particular mission but is not able to be ignited 
even using an ETC mechanism, pointing even more clearly to a synergism that must exist 
between the charge designer and the ignition system designer.   

 

 

Figure 6.  Current vs. time profiles used in the plasma ignition studies. 
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Figure 7.  Chamber pressure vs. time computed using the NGEN code for 
the disk/disk/grain charge and using the current profiles shown in 
figure 6.  

As these issues will be explored in future publications, the immediate question is whether the 
current treatment of the plasma in the NGEN code is sufficient to put confidence in the present 
results.  There have been several previous studies in which the plasma efflux from the ETC 
capillary has been modeled as multicomponent (i.e., 39 chemical species), chemically reacting 
(i.e., 57 chemical reactions) gas (17–19).  The Powell plasma capillary model (26) was employed 
by these studies, and as has been the case for the NGEN code, this capillary model was linked to 
the ARL-NSRG3 reactive flow code.  These studies have pointed to the necessity of including 
the multicomponent nature of the plasma and it reactivity with air and propellant gases.  Since a 
detailed chemical treatment of the plasma of this type is not compatible with the NGEN code 
(i.e., more of an issue with prohibitive computer runs times), the subject of the remainder of this 
paper is an investigation of the simplified plasma representation used in the NGEN code. 

4. Results for the ARL 25-mm Simulator 

4.1 Description of the Simulator Experiment 

The ARL 25-mm ETC ballistic simulator experiment, constructed by Chang and Howard  
(31–33), has been used to investigate plasma flow through the centercore of an assembly of 
concentric solid propellant disks that are each separated axially by a small gap—much like the 
configuration of an actual gun charge.  Figure 8 shows a chamber, made of visually transparent  
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Figure 8.  Photographs of the ARL 25-mm simulator loaded with disks without spacers and a single Masonite 
disk (dimensions shown are from Chang and Howard [32]). 

acrylic, that allows cinematography of plasma flows and ignition events along the propellant bed.  
The chamber can withstand pressures up to ~7 MPa (1,000 psi) before rupture.  Three Kistler 
pressure transducers (Model 211B1) can be installed for monitoring chamber pressures near the 
breech and forward ends of the chamber.  The chamber is 10.15 cm long and has a 3.4-cm 
diameter.  The chamber is narrowed to a 2.44-cm diameter at the forward end and sealed.  A 
simulated projectile afterbody of 1.5-cm length and a 2.1-cm base diameter is inserted into the 
forward end of the chamber.  Along the length that is of constant diameter, a series of concentric 
disks are placed (figure 8).  These disks are made from inert material and are of 33 mm outer 
diameter (OD), 8-mm inner diameter (ID), and 6.35-mm thickness.  Each disk is 5.84 g.  In one 
setup, 12 disks are loaded with an initial gap between each disk of about 0.8 mm (0.030 in).  In 
an alternate setup, 13 disks (last disk is 5.35 cm thick) are loaded with an initial gap between 
each disk of about 0.4 mm (0.015 in).  The chamber space ahead of the last disk is filled with 
small seven perf grains of inert material (2.54 mm in length and 2.54 mm in diameter).  A small 
gap of 0.076 cm exists between the breech wall and the first disk.  There is a small radial gap of 
0.049 cm along the radial wall of the chamber. 

The ablative capillary used in this study to generate the plasma basically consists of a stainless 
steel cylinder that housed a polyethylene tube with an ID of 3 mm (0.125 in).  A plasma injector 
was mounted on the breech end of the chamber.  The igniter wire for the plasma was a  
0.005-in-diameter nickel wire used in prior experiments.  The anode was made of tungsten and 
with a stainless steel cathode at the plasma jet exit.  The pulse power supply was capable of 
delivering energies of up to nearly 3 kJ at a voltage of 3 kV.  A capacitor bank of 250 J and a 
pulse forming network delivers energy to the capillary in about 360 µs.  The voltage, current, 
chamber pressures, and ignition events were recorded directly on a Nicolet Integra 20 digital 
oscilloscope.  With the measured voltage and current, the power and energy output of the 
capillary was subsequently calculated.  These data are shown in figure 9.  Typical pressure-time 
data recorded in the simulator are shown in figure 10. 
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Figure 9.  Electrical profiles (current in amperes: red; power in 
kilowatts: green; voltage in volts:  blue; and energy in joules: 
brown) used in the ARL 25-mm simulator tests (32). 

 

               
 (a) (b)  

Figure 10.  Pressure tap data measured in the ARL 25-mm simulator for (a) 0.015-in disk gap shown on left and 
(b) 0.030-in disk gap shown on right (31–33). 

4.2 Description of the NGEN Code Results 

Figure 11 shows a comparison between the measured and computed pressures in the 25-mm 
simulator loaded with disk with the 0.015-in spacers.  A common color code has been used so 
that the pressure tap located near the breech end on the chamber is colored black and the pressure 
tap located in the chambrage region, loaded with the inert grains, is colored red.  The NGEN 
simulations feature a pressure data station midway between the rear and the forward stations, 
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 (a) (b)  

Figure 11.  Pressure tap results for a disk gap of 0.015 in:  (a) data measured in the ARL 25-mm simulator 
shown on the left and (b) NGEN code simulation shown on the right. 

colored green, that was not used in the simulator.  Both the measured and computed pressure for 
the rear location show an initial rise starting before 0.1 ms and peaking at about 0.35 ms with a 
pressure of about 1.1 MPa.  The pressure traces for the forward location show a similar behavior 
with a peak of about 0.9 MPa.  As is expected, each pressure tap included in the simulation is 
affected in turn, indicative of a pressure wave that travels through the chamber from breech end 
to forward chambrage; recall from figure 9 that the peak current occurs at about 0.2 ms and that 
the capillary is no longer charged after about 0.38 ms.  While the measured data traces show a 
drop in pressure to a level of about 0.6 MPa after about 0.35 ms, the computations show that the 
pressure in the chamber, for all tap locations, reaches a steady pressure of about 1 MPa.  It is 
thought that some loss mechanism particular to this experiment is missing from the NGEN 
model or that the simulator was prone to developing leaks.  These issues will be resolved in 
future papers. 

Figure 12 shows a sequence of eight color flowfield pressure maps computed as part of the 
NGEN simulation from 0.02 to 0.40 ms for the case of disks spaced 0.015 in apart.  A constant 
pressure range was used for all of the plots (i.e., blue is 0.1 MPa and below, while red is 1 MPa 
and above).  Superimposed on the pressure fields are velocity vectors shown in black, that 
indicate the magnitude and direction of the gas flow (note that not all vectors are plotted for 
clarity).  The velocity vectors illustrate that the plasma efflux is emanating from a small region 
along the breech wall and near the chamber centerline.  It can be seen that both the centercore of 
the chamber and the narrow space along the breech wall, that are not occupied by propellant, 
pressurize rapidly, followed by a pressure wave that moves from rear to forward through the 
disks (note the velocity vectors).  When this wave reaches the base of the projectile afterbody, 
the chambrage region is pressurized and the wave reflects back toward the breech.  By 0.40 ms, 
the plasma efflux has terminated, wave action has ceased, and that chamber is pressurized to near 
uniformity. 
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Figure 12.  Color pressure contours and superimposed velocity vectors as computed using 
the NGEN code for disks with a gap of 0.015 in (0.4 cm) and for times from 
0.02 to 0.40 ms. 



 13

Figure 13 shows a comparison between the measured and computed pressures in the 25-mm 
simulator loaded with disk with the 0.030-in spacers.  A common color code has been used so 
that the pressure tap located near the breech end on the chamber is colored black and the pressure 
tap located in the chambrage region is colored red.  The NGEN simulations also feature a 
pressure data station midway between the rear and the forward stations.  Both the measured and 
computed pressures for the rear location show a rapid initial rise starting before 0.1 ms and 
peaking at about 0.35 ms with a pressure between 0.9 and 1.1 MPa.  Due to the wider flow paths 
between disks in this charge, the pressure rise for the rear location is much more rapid than that 
seen for the small disk gap of 0.015 in (figure 11).  The pressure traces for the forward location 
show a similar behavior with a peak of about 1.1 MPa.  While the measured data traces show a 
drop in pressure to a level of about 0.6 MPa after about 0.35 ms, the computations show that the 
pressure in the chamber, for all tap locations, reaches a steady pressure of about 0.7 MPa.  Due to 
the increased free chamber volume in this configuration, the pressure levels are slightly lower 
than those for the loading with a smaller disk gap.  The agreement between measured and 
computed pressure is not as good as that reported for the propellant charge with more closely 
spaced disks.  This discrepancy will be investigated in future papers. 
 

                  
 (a) (b)  

Figure 13.  Pressure tap results for a disk gap of 0.030 in:  (a) data measured in the ARL 25-mm simulator shown 
on the left and (b) NGEN code simulation shown on the right. 

 

Figure 14 shows a sequence of eight color flowfield pressure maps computed as part of the 
NGEN simulation from 0.02 to 0.40 ms for the case of disks spaced 0.030 in apart.  A constant 
pressure range was used for all of the plots (i.e., blue is 0.1 MPa and below, while red is 1 MPa 
and above).  Superimposed on the pressure fields are velocity vectors, shown in black, that 
indicate the magnitude and direction of the gas flow (note that not all vectors are plotted for 
clarity).  The velocity vectors illustrate that the plasma efflux is emanating from a small region 
along the breech wall and near the chamber centerline.  It can be seen that both the centercore of 
the chamber and the narrow space along the breech wall, that are not occupied by propellant,  
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Figure 14.  Color pressure contours and superimposed velocity vectors as computed using 
the NGEN code for disks with a gap of 0.030 in (0.8 cm) and for times from 
0.02 to 0.40 ms. 
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pressurize rapidly, followed by a pressure wave that moves from rear to forward through the 
disks (note the velocity vectors).  When this wave reaches the base of the projectile afterbody, 
the chambrage region is pressurized and the wave reflects back toward the breech.  Both the 
speed of this advancing pressure wave and the magnitude of the wave reflection are slower and 
weaker, respectively, than those for the configuration with a smaller gap between disks which 
corresponds to the increased free chamber volume resulting from the wider gaps between disks.  
By 0.40 ms, the plasma efflux has terminated, wave action has ceased and that chamber is 
pressurized to near uniformity but to a lover level than that for the disk gap of 0.015 in (recall 
figure 12). 

4.3 Sensitivity Study for the NGEN Code Results 

Since the results of a flow field simulation are often dependent on the resolution of the 
computational grid (or mesh), a grid study was conducted for the present simulations.  
Experience with the NGEN code has shown that grid dependence is very mild for typical gun 
chamber configurations especially when the charge is purely granular.  In the present case, the 
outer diameter of the disks does not match the chamber diameter and thus a small flow gap 
(0.049 cm) is present along the radial wall of the chamber.  The radial grid for the present 
simulations was constructed in order to capture this radial gap with one grid cell. The radial grid 
consists of 53 cells (i.e., uniform radial spacing of 0.032 cm).  In addition, there exits a small 
axial gap (0.076 cm) between the chamber breech wall and the surface of the first disk.  Gaps 
between the disks were either 0.038 cm (0.015 in) or 0.076 cm (0.030 in).  Since the NGEN code 
takes a macroscopic approach to the representation of the disk propellant region, the individual 
gaps between disks are not explicitly represented even though the gap between the breech wall 
and the first disk can be explicitly represented.  For numerical stability and accuracy 
considerations, it is desirable to distribute the axial grid in a uniform manner, consistent with the 
radial grid.  In order to capture the axial wall gap, 230 axial cells are required in the constant 
diameter section of the chamber.  Two additional axial grids were constructed of 58 and 29 axial 
cells in the constant diameter section of the chamber.  For the entire chamber (i.e., including the 
chambrage section) the course mesh {axial, radial} is {34, 53}, the fine mesh is {68, 53}, and the 
finer mesh is {250, 53}. 

Figures 15–17 show the NGEN code pressure-time results for the three computational meshes, 
previously discussed, referring to the rear, middle, and forward pressure data collection points.  
The same color code has been maintained as was used in figures 11 and 13 in which the finer 
grid was used to generate results.  In general and across the pressure data locations and disk 
gaps, the final pressure computed at about 0.8 ms was independent of the computational mesh, as 
expected.  For the rear pressure collection location, the NGEN code showed markedly higher 
pressures for the courser meshes.  In fact, the pressure computed using the finer mesh agreed 
closer with the measured data (recall figures 11 and 13).  For the middle pressure collection 
location, the NGEN code showed the least dependence on computational mesh used.  For the 
forward pressure collection location that is actually in the region occupied by granular 
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(a) (b)  

Figure 15.  NGEN code computed pressure results for the rear location using several levels of 
computational mesh resolution:  (a) 0.015-in disk gap and (b) 0.030-in disk gap. 

 
 

(a) (b)  

Figure 16.  NGEN code computed pressure results for the middle location using several levels of 
computational mesh resolution:  (a) 0.015-in disk gap and (b) 0.030-in disk gap. 

  

(a) (b)  

Figure 17.  NGEN code computed pressure results for the forward location using several levels of 
computational mesh resolution:  (a) 0.030-in disk gap and (b) 0.015-in disk gap. 
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propellant, the NGEN code showed the most dependence on computational mesh used, the 
results for the finer mesh agreeing best with the measured data.  Overall, it has been shown that a 
very fine mesh would need to be used in the NGEN simulation for disk propellant.  Subsequent 
NGEN simulations using a still finer mesh did not yield pressure-time results significantly 
different that those shown for the “finer” mesh, previously discussed. 

 

5. Summary and Conclusions 

The NGEN multidimensional, multiphase CFD code has been successfully used to model the 
interior ballistics of solid propellant charges ignited using hot chemical gases like those 
generated by burning Benite.  In order to model charges ignited using injected plasma, which is 
generated by an ablation capillary of polyethylene, the NGEN code was upgraded with a single-
component, nonreacting gas phase treatment of the plasma and linked to a well-known and 
independently validated capillary model.  When applied to the simulation of tightly packed solid 
propellant charges, the NGEN code shows that the plasma ignition is much more prompt when 
compared to the Benite igniter.  This result is in agreement with gun firing data.  Further, the 
NGEN simulations show that the ignition delay is lengthened, perhaps to the point of a 
nonignition event, when the current that is input to the ablation capillary is reduced.  This is an 
important result as it necessitates a closer linkage between the charge designer and the igniter 
designer when the ETC option is utilized.  Given independent plasma-propellant modeling 
results that point to the need for a multicomponent, reacting flow representation of the plasma 
and the incompatibility of this level of plasma modeling with the NGEN code, within the 
constraints of currently available computers, there is an immediate need to validate the NGEN 
code for the design of ETC guns.  The first step in this effort has been to compare the chamber 
pressure measured in a ballistics simulator with that computed using the code.  The configuration 
chosen was a 25-mm chamber filled with inert disks and linked to an ablative capillary of the 
size and power of a typical ETC gun igniter.  Preliminary results for the use of two different disk 
spacers look very encouraging.  The need for an appropriately refined computational mesh was 
highlighted.  Future work is required that will examine the repeatability of the data and extend 
the comparison of the NGEN model and the ballistics simulator. 
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   A KOTLAR 
   C LEVERITT  
   R LIEB 
   K MCNESBY 
   M MCQUAID  
   A MIZIOLEK  
   J NEWBERRY 

   M NUSCA (6 CPS) 
   R PESCE-RODRIGUEZ  
   S PIRIANO 
   G REEVES  
   B RICE 
   R SAUSA  
   J SCHMIDT 
   A WILLIAMS 
  AMSRD ARL WM BF 
   R ANDERSON 
   W OBERLE  
   D WILKERSON 
  AMSRD ARL WM EG 
   E SCHMIDT 
  AMSRD ARL WM SG 
   W CIEPIELA 
 
 1 CDR USAATC 
  CSTE DTC AT SL  
  APG MD 21005 
 
 


